Modeling Blast Loading on Buried Reinforced Concrete Structures with Zapotec Greg C. Bessette Computational Physics and Simulation Frameworks (9232) Sandia National Laboratories Albuquerque NM 75th Shock and Vibration Symposium Virginia Beach VA 19 – 21 October 2004 #### **Overview** - Model response of a buried reinforced concrete structure to closein detonation of a conventional explosive charge - Many approaches exist for modeling blast/structure interaction - Engineering models, FE, Euler, ALE, CEL, FE/SPH, etc. - One-way coupling often used - Works well when the load duration is short compared to the response time of the structure - Problematic for long duration loading or complex structure geometries - Fully coupled analyses becoming more common - Current work uses the coupled Euler-Lagrange (CEL) solution approach embedded within the Zapotec code - Investigate utility of CEL algorithm via benchmark calculations - Benchmarks derived from CONWEB test series ### What is Zapotec? - Coupled Euler-Lagrange computer code - Directly couples two production codes - CTH: Eulerian shock physics code - Pronto3D: Explicit, Lagrangian FE code - Zapotec couples interaction between Lagrangian and Eulerian materials # Zapotec Background The Coupled Algorithm in Time - CTH and Pronto3D are run sequentially, cycle by cycle - Algorithm permits Pronto3D subcycling ## The Zapotec Coupling Algorithm - Coupled treatment conducted in two steps, referred to as material insertion and force application - Material insertion step updates CTH data - Force application step updates Pronto3D data # The Zapotec Coupling Algorithm Material Insertion Step - Remove pre-existing Lagrangian material from the CTH mesh - Get updated Lagrangian data - Insert Lagrangian material into CTH mesh - Compute volume overlaps - Map Lagrangian data mass, momentum, sound speed, stress, internal energy $$P_{L,inserted} = (V_{O,L1} P_{L1} + V_{O,L2} P_{L2}) / V_{O}$$ $$V_{\text{overlap}} = V_{\text{O}} = V_{\text{O,L1}} + V_{\text{O,L2}}$$ # The Zapotec Coupling Algorithm Force Application Step - Remove pre-existing Lagrangian material from the CTH mesh - Get updated Lagrangian data - Insert Lagrangian material into CTH mesh - Compute volume overlaps - Map Lagrangian data - Compute external force on Lagrangian surface - Determine surface overlaps - Compute surface tractions based on Eulerian stress state - Compute normal force on element surface (element-centered force) - If friction, compute tangential force as $\mathbf{f}_t = \mu f_n \mathbf{s}$ - Distribute forces to nodes $$\mathbf{f}_{\mathrm{n}} = (\mathbf{t} \cdot \mathbf{n}_{\mathrm{L}}) A_{\mathrm{overlap}} \mathbf{n}_{\mathrm{L}}$$ $$\mathbf{f}_{\mathrm{I}} = \mathbf{N}_{\mathrm{I}} \mathbf{f}_{\mathrm{n}}$$ #### **Benchmark Data** - Conventional Weapon Effects Backfill (CONWEB) Test Series - Conducted by Waterways Experiment Station in late 1980s - 15.4-lb cased C-4 Charge at 5 ft standoff - Controlled backfill: sand and clay - Test Structure - Reinforced concrete (RC) slab bolted to reusable reaction structure - Slab thickness varied (4.3 and 8.6 inches) - Reaction Structure: 15 ft long, 65 inches high, 4 ft deep - Structure and soil instrumented - Test 1 - Clay Backfill - Slab thickness: 4.3 inches - Test 2 - Clay Backfill - Slab thickness: 8.6 inches - Test 3 - Sand backfill in test bed - Neighboring material is in-situ clay - Slab thickness: 4.3 inches ### **Analysis Overview** - Preliminary CTH analyses to develop material model for soil - Developed initial fit to hydrostatic and TXC data - Ran series of 2DC and 3D CTH standalone calculations to calibrate the model to better match measured free-field impulse and velocity data - Zapotec analysis - Soil and charge are Eulerian - Structure is Lagrangian - Comparisons - Interface impulse - Structure velocities - Slab permanent displacement - Many excursions calculations to assess modeling uncertainty ## **Problem Development** #### Pronto3D - Detailed FE mesh of structure - Reinforcement and bolted connections explicitly modeled - Approx. 80K elements - Resolution ~ 0.75 inch (1.9 cm) - Material Modeling - Concrete: K&C Concrete Model - Reinforcement: Rebar Model #### · CTH - Meshing - Mesh extended well beyond the structure - Approx. 1.7 million cells - Resolution ~ 1.2 inch (3 cm) - Material Modeling - Charge: JWL Library EOS for C-4 - Steel Case: Elastic-Plastic material - Soil: P-alpha EOS with Geologic (GEO) strength model ### **Typical Results** Test 1, Clay Backfill AHS-0: Center of RC Slab AHS-10: Base of Reaction Structure RC Slab: 4.3 inches Thickness: Strength (f_c'): 6095 psi Reinforcement: 1.0 % Backfill: Clay #### **Structure Response** Measured: Breach (18 x 51-inch) Calculated: Failed concrete at slab center and along supports Test 1, T = 4.3 inches (p = 1%) RC slab is not breached in test or calculation Light-to-moderate damage to RC slab **Permanent Displacement** Measured: 1.2 inches Calculated: 1.4 inches Test 2, T = 8.6 inches (p = 0.5%) #### **Structure Response** Measured: Breach (18 x 51-inch) Calculated: Failed concrete at slab center and along supports Test 1 - Clay Backfill RC slab is not breached in test or calculation Light damage to RC slab **Permanent Displacement** Measured: 1.1 inches Calculated: 1.2 inches Test 3 - Sand Backfill, In-situ Clay ### **Observations** - Coupled interaction arises from direct blast and rigid body motion of structure - Fully coupled interaction over a long duration - Precludes use of one-way coupling - Most analyses run to 20 msec - Selected analyses run to 90 msec to recover permanent deflection - Parameter study conducted to assess modeling uncertainties for Test 1 - Assumed symmetry about charge - Treatment of bolted connections - Mesh resolution (CTH and Pronto3D) - Material modeling (rebar, concrete, and soil) - Variations in soil modeling had first-order effect on analysis ## **Observations (Cont'd)** - Modeling response of sand was problematic - Material model derived from static data, then calibrated to free-field data - Good comparison of peak free-field pressures, but significant under-prediction (~30 percent) of free-field impulse - TOA significantly under-predicted - Consequence: can expect under-prediction of loading on the structure - Why was soil modeling an issue? - Recall, soil modeled using P-alpha EOS and Geologic (GEO) strength model - Material compaction cannot be recovered in P-alpha EOS - EOS and strength models operate independently - Porosity has no effect on yield ## **Concluding Remarks** - CEL approach shows promise for modeling the blast/structure interaction problem - Automatically handles interaction from direct blast and structure rigid body motion - Avoids complicated data handling associated with oneway coupling - Handles coupling over extended times - Alternative constitutive model for porous, saturated soils is needed - New CTH model, Geo-Effective Stress, coming on-line - Modeling structural damage/breach is an open issue